| Boat Name | JGPC | 1 . 1.1 | | _ Hull # | 134 | |---|---|--|--|--|-----------------------------| | Owner(s) | WIND | WAYE | RILLC | <u></u> | | | Configuration | for Certification | (Y/N & com | ment all items; bo | at must comply @ ins | pection) | | V-berth | cushions | | | | | | Dodger | frame and dodge | r (in standard | d location) | | | | 2nd batt | ery (in standard l | ocation for in | nterior layout of the | e boat) | | | Water ta | nk, empty in stan | ndard location | n | | | | Cooker, | in standard locat | ion | | | | | Systems | s Group (auto bilg | je pump, van | nity sink, water pu | mp, drawers in galley | & nav table) | | ∕_ Grab Ra | ails | | | | • | | Genoa t | racks | | | | | | Shore p | ower installation (| (remo ve cab l | le) | | | | Autopilo | t on the [wheel] [j | n lazarette] (| circle one) | | | | Stereo/F | Radio System and | Speakers | • | | | | Tiller WI | neel Circle one) | | | | • | | Other = 1 | Describe permane | ently installed | d only A | IAV PRG. | | | | | | | | | | | | 1 1 | · | . | | | Existing Corre | ctor Weight | 154 1 | Enter value as Co | rrect in Net Meight c | alc line) | | | | | | orrect in Net Weight ca | • | | Fuel Weight: (| Circle value and e | enter in Net V | Veight line. Forma | at is Kg(Lb). Fraction i | s Gauge. | | Fuel Weight: 0 < 5(11) ≤ 1/ | Circle value and e | enter in Net V $(22) \le \frac{1}{2}$ | Veight line. Format $\sqrt{2} < 15(33) \le \frac{3}{4}$ | | • | | Fuel Weight: 0
0 < 5(11) ≤ 1/
Net Weight Ca | 2 ircle value and e
3 1/3 < 10(2
clculation: Kg(Lb) | enter in Net V
$(22) \le \frac{1}{2}$ $(CIRCLE\ TH)$ | Veight line. Forma
√2 < 15(33) ≤ ¾ HE UNITS) | at is Kg(Lb), Fraction i | s Gauge. | | Fuel Weight: 0
0 < 5(11) ≤ 1/
Net Weight Ca
Gross 870 | Circle value and e 3 1/3 < 10(2 Ilculation: Kg(Lb) | enter in Net V
22) ≤ ½ | Veight line. Forma
½ < 15(33) ≤ ¾ HE UNITS) ect /59 | at is Kg(Lb). Fraction i | s Gauge. | | Fuel Weight: $0 < 5(11) \le 1/2$ Net Weight Ca Gross 870 If scale does as | Dircle value and e 3 1/3 < 10(2 Culculation: Kg(Lb) -Lift Rig 3 uto-tare enter that | enter in Net V
22) ≤ ½ ½
0(CIRCLE TH
-Corret
t in Gross an | Veight line. Forma | at is Kg(Lb). Fraction i
3/4 <25(55) < Full
-Fuel <u>55</u> = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does as Total Correction | Dircle value and e 3 1/3 < 10(2 Ilculation: Kg(Lb) Lift Rig 3 uto-tare enter that on Weight: [3890] | enter in Net V 22) ≤ ½ COIRCLE THE CORRECT Tin Gross and C(8576) – Ne | Veight line. Forma
2 < 15(33) ≤ 3/4
HE UNITS)
ect /59
nd 0 in Lift Rig | at is Kg(Lb). Fraction in $\frac{3}{4} < 25(55) < \text{Full}$ $-\text{Fuel} \underline{55} = \text{Net} \underline{}$ (If neg | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Correction | 2 1/3 < 10(2 2 1 1/3 < 10(2 2 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 | enter in Net V 22) ≤ ½ (CIRCLE THE CORRECT C | Veight line. Forma 2 < 15(33) ≤ ¾ HE UNITS) ect /59 ad 0 in Lift Rig et] = ction Weight – Exi | at is Kg(Lb). Fraction is $\frac{34}{4} < 25(55) < \text{Full}$ Fuel $\frac{55}{2}$ = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All | 2 1/3 < 10(2 1/3 < 10(2 1/3 < 10(2 1/3 < 10(2 1/3) | enter in Net V 22) ≤ ½ CORCLE THE CORRETE Tin Gross and Correct | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et] = ction Weight – Exi | at is Kg(Lb). Fraction is 34 <25(55) < Full Fuel 55 = Net (If necesting Correction = | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark e | 2 1/3 < 10(2 1/3 < 10(2 1/3 < 10(2 1/3 < 10(2 1/3 < 10(2 1/3)) Lift Rig value and e 1/3 < 10(2 1/3 < 10(2 1/3)) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and | enter in Net V 22) ≤ ½ (CIRCLE THE CORRECT OF | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et] = ction Weight – Exi | at is Kg(Lb). Fraction is $\frac{34}{4} < 25(55) < \text{Full}$ Fuel $\frac{55}{2}$ = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark e | 26.55 | enter in Net V 22) ≤ ½ CORCLE THe Correct in Gross and (8576) – Ne Total Correct Changed Total Correct T | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et = ction Weight – Exit Correction Weight Describe Local | at is Kg(Lb). Fraction is 3/4 <25(55) < Full Fuel 55 = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark e | 2 1/3 < 10(2 1/3 < 10(2 1/3 < 10(2 1/3 < 10(2 1/3 < 10(2 1/3)) Lift Rig value and e 1/3 < 10(2 1/3 < 10(2 1/3)) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and e 1/3 < 10(2 1/3) Lift Rig value and | enter in Net V 22) ≤ ½ CORCLE THe Correct in Gross and (8576) – Ne Total Correct Changed Total Correct T | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et] = ction Weight – Exi | at is Kg(Lb). Fraction is 3/4 <25(55) < Full Fuel 55 = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark e | 26.55 | enter in Net V 22) ≤ ½ CORCLE THe Correct in Gross and (8576) – Ne Total Correct Changed Total Correct T | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et = ction Weight – Exit Correction Weight Describe Local | at is Kg(Lb). Fraction is 3/4 <25(55) < Full Fuel 55 = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark e | 26.55 | enter in Net V 22) ≤ ½ CORCLE THe Correct in Gross and (8576) – Ne Total Correct Changed Total Correct T | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et = ction Weight – Exit Correction Weight Describe Local | at is Kg(Lb). Fraction is 3/4 <25(55) < Full Fuel 55 = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark et al.) 3 Annotation | 26.55 | enter in Net V 22) ≤ ½ CORCLE THe Correct in Gross and (8576) – Ne Total Correct Changed Total Correct T | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et = ction Weight – Exit Correction Weight Describe Local | at is Kg(Lb). Fraction is 3/4 <25(55) < Full Fuel 55 = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark et al.) 3 multiple state of the state of the scale sca | Circle value and e 3 1/3 < 10(2 Cloulation: Kg Lb B -Lift Rig uto-tare enter that on Weight: [3890 rection Weight: New, Existing al each weight so visi | enter in Net V 22) ≤ ½ CORCLE THe Correct in Gross and (8576) – Ne Total Correct Changed Total Correct T | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et = ction Weight – Exit Correction Weight Describe Local | at is Kg(Lb). Fraction is 3/4 <25(55) < Full Fuel 55 = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark et al.) 3 Annotation | Circle value and e 3 1/3 < 10(2 Cloulation: Kg Lb B -Lift Rig uto-tare enter that on Weight: [3890 rection Weight: New, Existing al each weight so visi | enter in Net V 22) ≤ ½ CORCLE THe Correct in Gross and (8576) – Ne Total Correct Changed Total Correct T | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et = ction Weight – Exit Correction Weight Describe Local | at is Kg(Lb). Fraction is 3/4 <25(55) < Full Fuel 55 = Net | s Gauge. Full = 35(77) 8494 | | Fuel Weight: 0 0 < 5(11) ≤ 1/ Net Weight Ca Gross 870 If scale does at Total Correction Total New Corr Document All Weight (mark et al.) 3 multiple state of the state of the scale sca | Circle value and e 3 1/3 < 10(2 Cloulation: Kg Lb B -Lift Rig uto-tare enter that on Weight: [3890 rection Weight: New, Existing al each weight so visi | enter in Net V 22) ≤ ½ CORCLE THe Correct in Gross and (8576) – Ne Total Correct Changed Total Correct T | Veight line. Forma 2 < 15(33) ≤ 3/4 HE UNITS) ect /59 nd 0 in Lift Rig et = ction Weight – Exit Correction Weight Describe Local | at is Kg(Lb). Fraction is 3/4 <25(55) < Full Fuel 55 = Net | s Gauge. Full = 35(77) 8494 |